Every modern processor has unfixable security flaws
January 3, 2018 – 7:32 PMWindows, Linux, and macOS have all received security patches that significantly alter how the operating systems handle virtual memory in order to protect against a hitherto undisclosed flaw. This is more than a little notable; it’s been clear that Microsoft and the Linux kernel developers have been informed of some non-public security issue and have been rushing to fix it. But nobody knew quite what the problem was, leading to lots of speculation and experimentation based on pre-releases of the patches.
Now we know what the flaw is. And it’s not great news, because there are in fact two related families of flaws with similar impact, and only one of them has any easy fix.
The flaws have been named Meltdown and Spectre. Meltdown was independently discovered by three groups—researchers from the Technical University of Graz in Austria, German security firm Cerberus Security, and Google’s Project Zero. Spectre was discovered independently by Project Zero and independent researcher Paul Kocher.
At their heart, both attacks takes advantage of the fact that processors execute instructions speculatively. All modern processors perform speculative execution to a greater or lesser extent; they’ll assume that, for example, a given condition will be true and execute instructions accordingly. If it later turns out that the condition was false, the speculatively executed instructions are discarded as if they had no effect.
However, while the discarded effects of this speculative execution don’t alter the outcome of a program, they do make changes to the lowest level architectural features of the processors. For example, speculative execution can load data into cache even if it turns out that the data should never have been loaded in the first place. The presence of the data in the cache can then be detected, because accessing it will be a little bit quicker than if it weren’t cached. Other data structures in the processor, such as the branch predictor, can also be probed and have their performance measured, which can similarly be used to reveal sensitive information.
You must be logged in to post a comment.